1. Reagents and Test Solutions

Quinaldine Red
\(\text{C}_{21}\text{H}_{23}\text{IN}_{2} \)
Quinaldine Red occurs as a crystalline powder and is soluble in ethanol. Its solution in methanol (0.005 \(\times \) 1,000) exhibits absorption maximum at a wavelength of about 526 nm. The absorbance is not less than 0.5 at the absorption maximum.

Quinaldine Red TS
Weigh 0.1 g of quinaldine red, and dissolve in 100 ml of acetic acid. Prepare freshly before use.

Red Litmus Paper
See Litmus Paper, Red.

Red Phosphorus
\(\text{P} \)
(Red Phosphorus, Extra grade)

Redistilled Water
Distill distilled water with a distilling apparatus fully made of hard glass.

Resorcinol
\(\text{C}_{6}\text{H}_{4}\text{(OH)}_{2} \)
(Guaranteed)

Salicylaldehyde
\(\text{HO}_{\text{C}}\text{H}_{\text{C}}\text{CHO} \)
(Guaranteed)

Salicylic Acid
\(\text{HO}_{\text{C}}\text{H}_{\text{C}}\text{COOH} \)
(Guaranteed)

Salicylic Acid

Methanol TS
Weigh 10 g of salicylic acid, and dissolve in 100 ml of methanol for Water Determination. Prepare freshly before use.

Sea Sand
(Guaranteed)

Selenium Dioxide
\(\text{SeO}_{2} \)
(Guaranteed)

Silica Gel
Use JIS packaging silica gel A.

Silica Gel for Thin-Layer Chromatography
Use silica gel of high quality prepared for Thin-Layer Chromatography.

Silica Gel for Thin-Layer Chromatography (Fluorescent Material added)
Use silica gel prepared for Thin-Layer Chromatography and added with fluorescent material.

Silicone Oil
Silicone Oil is a colorless and clear liquid. It is odorless.

 Kinematic viscosity: 50 - 100 mm²/s.

Silicone Resin
Silicone Resin occurs as a light-gray translucent, viscous liquid or pasty substance. It is almost odorless.

 Refractive index and Kinematic viscosity: Transfer 15 g of Silicone Resin in a Soxhlet extractor, extract for 3 hours with 150 ml of carbon tetrachloride. Evaporate the extract on a water bath. Kinematic viscosity of this liquid is 100 - 1100 mm²/s (at 25 °), and refractive index is 1.400 - 1.410 (at 25 °).

 Specific gravity: 0.98 - 1.02.

 Loss on Drying: 0.45 - 2.25 g (100 °, 1 hour).

 Use the residue of extraction directed under Refractive index and Kinematic viscosity,

Silver N,N-Diethyldithiocarbamide
\(\text{C}_{5}\text{H}_{10}\text{AgNS}_{2} \)
(Silver N,N-Diethyldithiocarbamate)

Silver Diethyldithiocarbamate
See Silver N,N-Diethyldithiocarbamate.

Silver Nitrate
\(\text{AgNO}_{3} \)
(Guaranteed)

Silver Nitrate-Ammonia TS
Weigh 1 g of silver nitrate, and dissolve in 20 ml of water. Add dropwise ammonia TS while stirring until the precipitate is almost dissolved, and filter. Store in a light-resistant container, tightly stopped.

Silver Sulfate
\(\text{Ag}_{2}\text{SO}_{4} \)
(Guaranteed)

Silylation TS
Measure 3 ml of \(\text{N,O-bis (trimethylsilyl)} \) acetamide, and dissolve in 2 ml of dimethylformamide. Prepare freshly before use.

Skimmed Milk
Remove almost all of the water from raw milk or cow's milk from which milk fat is previously excluded, and make it into powder.

Soda Lime
(Extra grade)

Sodium Acetate
\(\text{CH}_{3}\text{COONa} \cdot 3\text{H}_{2}\text{O} \)
[Sodium Acetate (Trihydrate), Guaranteed]

Sodium Acetate, Anhydrous
\(\text{CH}_{3}\text{COONa} \)
[Sodium Acetate (Anhydrous),}
1. Reagents and Test Solutions

Guaranteed

Sodium Borate \(\text{Na}_2\text{B}_4\text{O}_7 \cdot 10\text{H}_2\text{O} \) [Sodium Tetraborate (Borax), Guaranteed]

Sodium Borate for pH Determination See Sodium Tetraborate for pH Determination.

Sodium Bromide \(\text{NaBr} \) (Guaranteed)

Sodium Carbonate \(\text{Na}_2\text{CO}_3 \cdot 10\text{H}_2\text{O} \) [Sodium Carbonate(Decahydrate), Guaranteed]

Sodium Carbonate (Standard reagent) \(\text{Na}_2\text{CO}_3 \) [Sodium Carbonate (Anhydrous), (Standard reagent)]

Sodium Carbonate for pH Determination \(\text{Na}_2\text{CO}_3 \) [Sodium Carbonate (Anhydrous) for pH determination]

Sodium Carbonate, Anhydrous \(\text{Na}_2\text{CO}_3 \) [Sodium Carbonate(Anhydrous), Guaranteed]

Sodium Chloride \(\text{NaCl} \) (Guaranteed)

Sodium Chloride (Standard reagent) \(\text{NaCl} \) (Standard reagent)

Sodium Citrate See Trisodium Citrate Dihydrate.

Sodium Cobaltinitrite \(\text{Na}_3[\text{Co(NO}_2)_6] \) [Sodium Hexanitrocobaltate (Ⅵ) (Sodium Cobaltinitrite), Guaranteed]

Sodium Cobaltinitrite TS Weigh 30 g of sodium cobaltinitrite, and dissolve in water to make 100 ml. Prepare freshly before use.

Sodium De(s)oxycholate \(
\text{C}_{24}\text{H}_{39}\text{NaO}_4 \) Sodium desoxycholate occurs as a white crystalline powder, and is odorless.

Identification: Dry Sodium Desoxycholate, and proceed as directed under the Potassium Bromide Disk Method in Infrared Spectrometry. The absorption bands are observed at wavenumbers of about 3,400 cm\(^{-1}\), 2,940 cm\(^{-1}\), 1,562 cm\(^{-1}\) and 1,408 cm\(^{-1}\).

Purity: Related substances Dissolve 0.10 g of Sodium Desoxycholate in 10 ml of methanol, and use this solution as the sample solution. Measure exactly 1 ml of the sample solution, add methanol to make exactly 100 ml, and use this solution as the standard solution. With the sample solution and the standard solution, proceed as directed under Thin-Layer Chromatography. Spot 10 µl each of the sample solution and the standard solution on a thin-layer plate prepared silica-gel for thin-layer chromatography. Develop to the height of about 10 cm using a mixture of 1-butanol - methanol - acetic acid (80 : 40 : 1) as the developing solvent. Air-dry the thin-layer plate, spray uniformly sulfuric acid, and heat for 10 minutes at 105 °. The spots other than the main spot from the sample solution are not more intense than the spot from the standard solution.

Sodium 2,6-Dichlorophenolindophenol \(\text{C}_{12}\text{H}_6\text{Cl}_2\text{NNaO}_2 \cdot \text{nH}_2\text{O} \) [Sodium 2,6-Dichlorophenolindophenol (Hydrate), Guaranteed]

Sodium 2,6-Dichlorophenolindophenol TS Weigh 0.1 g of sodium 2,6-dichlorophenolindophenol, add 100 ml of water, warm, and filter the solution. Store in a brown bottle and use within 3 days after preparation.

Sodium Diethylidithiocarbamate See Sodium \(\text{N},\text{N}-\text{Diethylidithiocarbamate} \).

Sodium \(\text{N},\text{N}-\text{Diethylidithiocarbamate} \) \(\text{(C}_2\text{H}_5)_2\text{NCS}_2\text{Na} \cdot 3\text{H}_2\text{O} \) (Guaranteed)

Sodium Fluoride \(\text{NaF} \) (Guaranteed)

Sodium Formate \(\text{HCOONa} \) (Guaranteed)

Sodium Formate HCOONa (Guaranteed)

Sodium L-Glutamate \(\text{C}_5\text{H}_8\text{NNaO}_4 \cdot \text{H}_2\text{O} \) Sodium L-Glutamate

Sodium Hydrogen Carbonate \(\text{NaHCO}_3 \) [Sodium Hydrogen Carbonate (Sodium Bicarbonate), Guaranteed]

Sodium Hydrogen Carbonate for pH Determination \(\text{NaHCO}_3 \) [Sodium
1. Reagents and Test Solutions

Hydrogen Carbonate (Sodium Bicarbonate) for pH determination

Sodium Hydrogen Sulfate NaHSO₄·H₂O [Sodium Hydrogen Sulfate (Sodium Acid Sulfate), Guaranteed]

Sodium Hydrogen Sulfite NaHSO₃ [Sodium Hydrogen Sulfite (Sodium Bisulfate), Extra grade]

Sodium Hydrogen Sulfite TS Weigh 10 g of sodium hydrogen sulfite, and dissolve in water to make 30 ml. Prepare freshly before use.

Sodium Hydrogen Tartrate HOOC(CH(OH)CH(OH)COONa·H₂O (Sodium Hydrogen Tartrate, Monohydrate, Guaranteed)

Sodium Hydrosulfite Na₂S₂O₄ [Sodium Hydrosulfite (Hydrosulfite), Extra grade]

Sodium Hydrosulfite TS Dissolve 4.3 g of sodium hydrosulfite in water to make 100 ml. Store in a polyethylene bottle.

Sodium Hydroxide NaOH (Guaranteed)

Sodium Hydroxide TS Dissolve 4.3 g of sodium hydroxide in water to make 100 ml. Store in a polyethylene bottle.

5% Sodium Hydroxide TS, Methanolic Weigh 5 g of sodium hydroxide, dissolve in 5 ml of water, add methanol to make 100 ml, and allow to stand. Use the supernatant as the test solution.

Sodium Iodide NaI (Guaranteed)

Sodium Lauryl Sulfate Use Sodium Lauryl Sulfate specified under the Japanese Pharmacopoeia.

Sodium Lauryl Sulfate - Propylene Glycol TS Weigh 1 g of sodium lauryl sulfate, dissolve in 80 ml of water, and mix the solution with 20 ml of propylene glycol.

Sodium Metaperiodate NaIO₄ (Guaranteed)

Sodium Metaperiodate TS Weigh 1.25 g of sodium metaperiodate, dissolve in water to make 100 ml.

Sodium Molybdate Na₂MoO₄·2H₂O (Guaranteed)

Sodium Nitrite NaNO₂ (Guaranteed)

Sodium Nitroprusside See Sodium Pentacyanonitrosylferrate (Ⅰ).

Sodium Nitroprusside TS Weigh 1 g of sodium nitroprusside, and dissolve in water to make 20 ml. Prepare freshly before use.

Sodium Oxalate (Standard reagent) Na₂OCCOONa (Guaranteed)

Sodium Pentacyanonitrosylferrate (Ⅰ) Na₂[Fe(CN)₅NO]·2H₂O (Guaranteed)

Sodium Periodate TS for Glycerol Add 12 ml of diluted sulfuric acid (3 ˠ 1,000) to 38 ml of freshly boiled and cooled water. Weigh 6 g of sodium metaperiodate, dissolve in the solution, and add freshly boiled and cooled water to make 100 ml. Filter if necessary.

Sodium Sulfate Na₂SO₄·10H₂O (Guaranteed)

Sodium Sulfate, Anhydrous Na₂SO₄ [Sodium Sulfate (Anhydrous), Guaranteed]

Sodium Sulfide Na₂S·9H₂O (Guaranteed)

Sodium Sulfide TS Weigh 5 g of sodium sulfide and dissolve in a mixture of 10 ml of water and 30 ml of glycerol. Or, weigh 5 g of sodium hydroxide and dissolve in a mixture of 30 ml of water and 90 ml of glycerol, and take a half volume of this solution, saturate with hydrogen sulfide while cooling, and mix the resulting solution with the other half volume of the solution (1 mol/l). Store in a small, light-resistant bottle, almost filled and tightly stoppered. Use within 3 months after preparation.

Sodium Sulfite, Anhydrous Na₂SO₃ [Sodium Sulfite (Anhydrous), Guaranteed]

Sodium Tartrate NaOOCCH(OH)CH(OH)COONa·2H₂O (Sodium Tartrate, Dihydrate, Guaranteed)

Sodium Tetraborate for pH Determination Na₂B₄O₇·10H₂O (Sodium tetraborate, for pH determination)

Sodium Tetrahydroborate NaBH₄ (For Atomic absorption)
1. Reagents and Test Solutions

Sodium Tetrahydroborate TS Dissolve 5 g of sodium tetrahydroborate to 500 ml of 0.1 mol/l sodium hydroxide.

Sodium Thiosulfate \(\text{Na}_2\text{S}_2\text{O}_3 \cdot 5\text{H}_2\text{O} \) (Guaranteed)

Sodium Tungstate \(\text{Na}_2\text{WO}_4 \cdot 2\text{H}_2\text{O} \) (Guaranteed)

D-Sorbitol \(\text{C}_6\text{H}_{14}\text{O}_6 \)

D-Sorbitol for Assay \(\text{C}_6\text{H}_{14}\text{O}_6 \cdot \) Weigh 80 g of D-Sorbitol, transfer into a 500-ml flask, add 220 ml of 90% methanol, equip with a reflux condenser, and dissolve while warming on a water bath. Cool, transfer into a 500-ml beaker, add 40 mg of D-Sorbitol as seed crystals, mix, and allow to stand for 72 hours. Filter the formed crystals by suction, and wash with 50 ml of methanol. Weigh 40 g of the recrystallized product, add 110 ml of 90% methanol, and repeat the process above to obtain a twice-recrystallized product, using a recrystallized product dried under reduced pressure at 80°C for 5 hours as the seed crystals. Dry the twice-recrystallized product under reduced pressure at 80°C for 5 hours.

Soybean Peptone See Peptone, Soybean.

Stannous Chloride See Tin (T) Chloride.

Stannous Chloride TS Weigh 10 g of tin (T) chloride, and dissolve in diluted sulfuric acid (3:200) to make 100 ml.

Stannous Chloride TS, Acidic Weigh 4 g of tin (T) chloride, dissolve in 125 ml of arsenic-free hydrochloric acid, and add water to make 250 ml. Store in a bottle with a ground-glass stopper, tightly stoppered. Use within 1 month after preparation.

Stannous Chloride – Hydrochloric Acid TS for Water-soluble Annatto Weigh 40 g of tin (T) chloride, and dissolve in hydrochloric acid to make 100 ml. Stopper tightly, and store.

Starch (Guaranteed)

Starch TS Weigh 1 g of starch, triturate with 10 ml of cold water, add slowly into 200 ml of boiling water while stirring, and boil until the mixture becomes translucent. Allow to cool and stand, and use the supernatant as starch TS. Prepare freshly before use.

Strong Cupric Acetate TS See Cupric Acetate TS, Strong.

Strongly Acidic Cation-exchange Resin See Cation-exchange Resin, Strongly Acidic.

Strongly Acidic Cation-exchange Resin (Fine) See Cation-exchange Resin, Strongly Acidic (Fine).

Strongly Acidic Phosphoryl-bridged Cellulose Cation-exchanger See P-bridged Cellulose Cation-exchanger(-O\(\text{PO}_3\text{H}_2\) Type), Strongly Acidic.

Strongly Basic Anion-exchange Resin See Anion-exchange Resin, Strongly Basic.

Styrene-Divinylbenzene Resin for Adsorption Porous resin made as adsorbent.

Sulfanilic Acid \(\text{NH}_2\text{C}_6\text{H}_4\text{SO}_3\text{H} \) (Guaranteed)

Sulfanilic Acid Azo G Salt Color \(\text{C}_16\text{H}_9\text{N}_2\cdot\text{Na}_3\cdot\text{O}_{10}\cdot\text{S} \) Sulfanilic Acid Azo G Salt Color is the trisodium salt of 7-hydroxy-8-(4-sulfophenylazo)-1,3-naphthalene sulfonic acid, and occurs as an orange-red powder.

Specific absorbance: \(E_{1\% \text{cm}} \) (absorption maximum near the 475 nm) = Not less than 303

Dry Sulfanilic Acid Azo G Salt Color for 24 hours in a vacuum desiccator, weigh 10.0 mg of it, dissolve in ammonium acetate solution (3:2,000) to make exactly 100 ml. Use this solution as solution A. Measure exactly 10 ml of solution A, add ammonium acetate solution (3:2,000) to make exactly 100 ml. Measure the absorption of this solution.
1. Reagents and Test Solutions

Purity: Other coloring matters

Measure exactly 10 ml of solution A, and add ammonium acetate solution (3 \(\times \) 2,000) to make exactly 100 ml. Measure 20 \(\mu l \) of this solution, and perform Liquid Chromatography under the operating conditions directed under Purity (5) for Food Yellow No.5 in the Monographs, JSFA-ᶜ. Only one peak is observed.

Sulfanilic Acid Azo -Naphthol Color

\(\text{C}_{18}\text{H}_{11}\text{N}_2\text{NaO}_4\text{S} \)

Sulfanilic Acid Azo -Naphthol Color is the monosodium salt of 4-(2-hydroxy-1-naphthyl azo)-benzene sulfonic acid, and occurs as an orange-red powder.

Specific absorbance: \(E_{1% 1cm} \) (absorption maximum near the 484 nm) = Not less than 640

Dry Sulfanilic Acid Azo -Naphthol Color for 24 hours in a vacuum desiccator, weigh 10.0 mg of it, dissolve in ammonium acetate solution (3 \(\times \) 2,000) to make exactly 100 ml. Use this solution as solution A. Measure exactly 10 ml of solution A, and add ammonium acetate solution (3 \(\times \) 2,000) to make exactly 100 ml. Measure the absorption of this solution.

Sulfanilic Acid Azo R Salt Color

\(\text{C}_{16}\text{H}_9\text{N}_2\text{Na}_3\text{O}_{10}\text{S}_3 \)

Sulfanilic Acid Azo R Salt Color is the trisodium salt of 3-hydroxy-4-(4-sulfophenyl azo)-2,7-naphthalene sulfonic acid, and occurs as an orange-red powder.

Specific absorbance: \(E_{1% 1cm} \) (absorption maximum near the 488 nm) = Not less than 432

Dry Sulfanilic Acid Azo R Salt Color for 24 hours in a vacuum desiccator, weigh 10.0 mg of it, dissolve in ammonium acetate solution (3 \(\times \) 2,000) to make exactly 100 ml. Use this solution as solution A. Measure exactly 10 ml of solution A, and add ammonium acetate solution (3 \(\times \) 2,000) to make exactly 100 ml. Measure the absorption of this solution.

Purity: Other aromatic compounds

Measure exactly 10 ml of solution A, add ammonium acetate solution (3 \(\times \) 2,000) to make exactly 100 ml. Measure 20 \(\mu l \) of this solution, and perform Liquid Chromatography under the operating conditions directed under Purity (5) for Food Yellow No.5 in the Monographs, JSFA-ᶜ. Only one peak is observed.

Sulfanilic Acid TS

Add 20 ml of diluted hydrochloric acid to 0.50 g of sulfanilic acid, warm and dissolve, and add water to make 100 ml.

Sulfur Dioxide \(\text{SO}_2 \)

Sulfur Dioxide is a colorless gas, having a characteristic odor. Prepare by adding dropwise sulfuric acid to a concentrated solution of sodium hydrogen sulfite.

Sulfuric Acid \(\text{H}_2\text{SO}_4 \) (Guaranteed)

Sulfuric Acid, Dilute

Measure 5.7 ml of sulfuric acid, add slowly to 10 ml of water, cool, and add water to make 100 ml.

15% Sulfuric Acid - Methanol TS

Measure 8.2 ml of sulfuric acid, add gradually to 20 ml of methanol, cool, and add methanol to make 100 ml.

Sulfurous Acid \(\text{H}_2\text{SO}_3 \) (Sulfurous Acid Water, Extra grade)